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CHAPTER 1
IT'SEASY AS123

In this chapter root systems and Chevalley bases for specific matrix representations
of some of the classical, simple, complex Lie algebras are constructed. Each classical, simple,
complex Lie algebra is a Lie subalgebra of gl,,(C) for some m. The subalgebra of diagonal
matrices in such a Lie algebra will be denoted by H. It turns out that for the matrix
representations considered, H is a maximal toral subalgebra.

It’s possible to refer to displayed equations at any time, even before they appear. For
example (1.1) is defined somewere below. This is not good form, but sometimes it’s handy.

For positive integers 4, j, and n with 1 <, < n, let ¢, ; denotes the square matrix

whose only non-zero entry is a 1 in row ¢ and column j. Denote the n x n diagonal matrix

with entries ay, ..., a, by diag(ai, ..., a,). Then
-al 0 0 ]
0 a» 0 .
diag(ay,...,a,) = | : = Z(lz@i,i-
0 . Ap—1 =
0 . 0 a,

Clearly the set {e;; | i <i < n} is a basis of the vector space of diagonal matrices.

Suppose h = diag(ay,...,a,) and 1 <4i,7 <n, then

[h, ei,j] = hem- — Gi’jh

n n

= E A €k, k€i5 — E A €; ;€L k
k=1 k=1
n

n
= g Qag 5k,i€k,j_ g ak5‘,k€i,k
k=1

k=1

= Qi €5 — A5 Cij

= (Cli — CLj) ei,j-



1.1. Type B,, the Odd-dimensional, Orthogonal Lie Algebras

The odd-dimensional, orthogonal Lie algebra s0s,1(C), or simply s09,,1, is the set

of all matrices X in gl,, (C) such that
JX = -X'J

100
where J = [0 0 I, |.
01, 0

O~

a s . .
Suppose X = ué , Where a is a complex number, s,t,u,v are vectors with n
v

components, and A, B, C, D are n x n matrices. Then JX = —X*J if and only if

1 0 0| |a s t —a —ut =t |1 0 0
0 0 I,||u A B|=|-st —A" —-C'| |0 0 I,|
0 I, O v C D —tt —Bt —Dt 0 1, O

which is if and only if
a=0 u=—-t" v=—-s" D=-A" B=-B' and C=-C"

If the i entry of s is s;, i entry of ¢ is ¢;, the (4,7) entry of A is a; ;, the (i, ) entry of B
is b; ;, and the (7, ) entry of C is ¢; ;, then [Z é é} is in 509, if and only if

0 S1 S9 e Sn tl tg Ce tn

—tl ay Q12 e Q1p 0 bLQ ce bl,n
—tQ a2 as 2 <. Qop —bg,l 0 Ce bg,n

a s t

(11) v A Bl = —tp Qn1 Qp,2 co. Qpn _bn,l —bn’g R 0

v C D —S1 0 C1,2 e Clp —Q11 —Qp2 ... —Qpj

—S2 —Co1 0 ... Cp —Q21 —Q22 ... —A2p
|80 —Ca1 —Cpa .- 0 —a1p, —ana ... —Qnn |

For 1 < i <n, define z; in H* by

x;(h) =a; when h=diag(0,aq,...,a,, —ai,...,—ay,).



Then z;(h) is the coefficient of d; when h is expressed as a linear combination of vectors in
Bi.

The set

B=BpU{erj1 —ensjrri| 1< j<ntU{enpjn —ea |1 <j<n}
U{eirtjir — entjrinritn | 1 <i# j <ntU{eiinijr —€rinrin | 1 <i<j<n}

U{entitijrn —entjrrin | 1<i<j<n}
is a basis of §02,11. In particular, dims0s,1 = 3n +n* —n+2(}) = 2n* + n.
PROPOSITION 1.2. The set B\ By consists of root vectors.

Proor. This is proved by direct computation. There are five cases.
Suppose that h = diag(0, ay, ..., a,, —a1,...,—a,) is in H.

Consider e j11 — €p4541,1 Where 1 < j < n. Then

[, €141 — entjrit] = [he1jp1] — [hs €]
= —Q; €141 — Aj Cptjt+1,1
= (—a;) (e1j+1 — €ntj+1,1)
= (—z;)(h) (e1j+1 — €ntjs1,1)-
Thus, €1 j+1 — €n+j+1,1 1S a root vector. The corresponding root is the linear function —z; in
H*.

Consider €;41,j+1 — €ntj+1,n+i+1 Where 1 <14 # 5 <n. Then

[h7 €it1,5+1 — €n+j+1,n+i+1] = [h, €i+1,j+1] - [h> 6n+j+1,n+i+1]

= (a; — aj) €ip1,541 — (a5 + @) €ntjrtnri

= (Gi - aj) (ei+1,j+1 - €n+j+1,n+i+1)

= (z; — x;)(h) (€ir141 — €npjrimrivt)-



Thus, €;41,j+1 — €n+j+1,n+i+1 is a root vector. The corresponding root is the linear function
x; —x; in H”.

The other two cases are similar: e; 411 — €;41,1 is a root vector and the correspond-
ing root is the linear function z; in H*; €,yit1, 41 — €j41,nti+1 1S a root vector and the
corresponding root is the linear function —z; — z; in H*.

The computations above are summarized in Table 1.1 and Table 1.2.

This table is typeset as a float that is strongly encouraged to come next if at all

possible. 0
i, J « €q
1<j<n —T; €141 — €ntjt1,1
1<j<n xj €1,n+j+1 — €j+1,1
1<i#j<n T — T €i+1,j+1 — Cntjt+ln+it+l
1<i<j<n T + X €itlntjtl — €+l ntitl
I1<i<j<n | —Zi—%j  entitlj+l — €j+1n+titl

TABLE 1.1. An ad hoc table not set as a float

Here is another reference to Table 1.2.

COROLLARY 1.3. The the subalgebra H is a maximal toral subalgebra and the root system

Of (502n+17H> is
O={t(r;tz;)|1<i<j<n}U{2zr;[1<i<n}

PROOF. By the proposition, s05,,1 has a root space decomposition. Suppose that H’ is
a toral subalgebra containing H. Just suppose that H’ properly contains H. Then H' is
abelian and there is an element A’ in H that is a linear combination of the basis elements in

B\ By. Write h/ = v, + h” where v, is a non-zero vector in the a root space. Then v, is



Zx | C% A Cx exp
Ay | Gs3 Y Y Y
Ay D, N N N
A2 B, N Y N
Ay |Gyis N N N
A |Gz ¥ Y Y
Gss| Ay Y Y Y

TABLE 1.2. A professional table set as a float

a non-zero multiple of the root vector e, in B\ By. Fix h in H such that h is not in ker v,
then [h, 2] = [h,vo + 1] = a(h)vy + [h,h"]. Then a(h)v, # 0 and [h, "] is in the span of
B\ (By U{e.}). Therefore, [h, h'] # 0. This contradicts the fact that H' is abelian. Thus,
H' = H and so H is maximal. O

For 1 <i <n define «; in H* by
O = Ty — Ti4+1 (]_SZSTL—]_),
Oy = Ty

Set IT = {a; | 1 <i < n}. It’s easy to see that II is a basis of H*. Notice that the roots
x; — x; with ¢ # j from Table 1.2 are split into two subsets depending on whether or not
1< 7.

1.2. Adding a Section to Have More Sections

The usual Euclidean metric on H* is defined by

d(i ;X4 i bz‘iCi) =
i=1 i=1

With respect to this metric, the roots 4(x; + x;) with i # j have length v/2 and the roots

+; have length 1. Thus, there are two root lengths. Roots with minimum length are called



short roots and roots with maximum length are called long roots. The highest root is a long
root.
By direct inspection, there is a unique highest short root, ry = a; + - - - 4+ «,, with
height n.
Notice that if o = Z?:l m;ay, then the coefficients m; are either all non-negative or
all non-positive. Define
ot = {a:Zmiai|mi20V1 Sign}
i=1
and
¢ = {a:Zmiozi | mi<0V1 Sign}.
i=1
Then &~ = —®" and & =T [[D~.
We next compute the elements t,, in H for 1 < i < n. Using the basis B of §09,+1

it is straightforward to compute the restriction of the Killing form to H by computing the
matrices of ad h and ad //, and then tr(ad h o ad h’) for h and A’ in H. The result is

k(h, 1) =" a(h)a(h).

aced

If h = diag(0,a4,...,a,, —ay,...,—a,) and B’ = diag(0,d},...,a,, —d|,...,—al), then
a(h)a(h') is given in Table 1.3.
The Killing form x(h,h’) can be computed in terms of the coefficients of h and A’

when h and A’ are expressed as linear combinations of {z1,...,z,} as follows.

p(h )= > 2((a; — a;)(a; — af) + (a; + a;)(af + a})) + 2 Z (a;al)

1<i<j<n

= Z (4a;a; + 4aja) + Z 2a,a;

1<i<j<n i=1

= > a2+ 4(n — i) + 4(i — 1))

=1

(1.4)

n

= (4n — 2) Z a;a,.

i=1



a a(h)a(h)

Ti — T (a; — aj)(aj — a})
x; (ai)(a}) = aiq;

x; + ) (a; + a;)(a; + a})

—xi+a; | (—ai+a;)(—a; +a}) = (ai — aj)(a; — aj)
— i (—ai)(=a;) = aia;

—xi—wj | = (—a; —a;)(—a; — aj) = (ai + a;)(aj + a})

TABLE 1.3. a(h)a(h’) when h = diag(ay, ..., a,) and b’ = diag(a},...,al,)

»'n

The penultimate equality in (1.4) is most easily seen by arranging the summands in an n xn

array.
2a1a)  4dayal + 4agal, 4daray +4agaly, ... ... ... dayd) + dayal,
2ayal dayal, + dazal dayaly + dapal,
2a3a) dazaly + dapal,

!/ /
4a,_sa,_o + 4a,a,,

2a,al,
1.3. Type D,: Even dimensional, Orthogonal Lie Algebras

For 1 < ¢ <mn. Then the element ¢,, in H is defined by the condition that
k(h,ts,) = a;(h) for all hin H.
Fix 1 <i <n—1 and suppose t,, = diag(0,t,...,t,, —t1,...,—t,). Then

a; — Qi1 = (4n — 2)(a1t1 + -+ aiti + ai+1t¢+1 + -+ antn)



when h = diag(0, a4, ...,a,, —ay,...,—a,). Thus, t1, ..., t, are such that

arty + -+ ai(ti — 725) + @i (tin + 7o5) T+ Galn =0

for all ay, ..., a, in C. Taking a; = 1 and a;, = 0 for k # j we see that
(
1 . .
a2 J=
ti=y—15 Jj=i+1
0 IEZRENY

\

Therefore, for 1 <i<n—1,t,, = ﬁ(di —diy1)-

Now consider t,,. Say t,, = diag(0,t1,...,t,, —t1,...,—t,). Then
an = (4n — 2)(arty + - + aiti + aatiyr + - + anty)
when h = diag(0,ay,...,a,, —ai,...,—a,). Thus, ¢1, ..., t, are such that

arty + -+ ap_1lp—1 + ay (t” - 471+Q) =0

for all ay, ..., a, in C. Taking a; = 1 and a; = 0 for k # j we see that
1 .
In—a2 J=N
tj -
0 Jj#n.

1
Therefore, t,, = -—dn.



CHAPTER 2

AS SIMPLE AS DO RE MI

2.1. Definition of ‘H and the Uniformly Expanding Property

In this section we define the family H and we establish basic dynamical properties of

a map f, € H. Then we we prove the important Lemma 2.4.

i, J o = Yo mioy ht(a)
1<i<ji<n Ti— T = ap+ oo j—1
1<i<n T; = o+t a1 o, n—1+1
1<i<j<n x; + = o+ a1+ 205 + -+ 20,01 + 20, n—1—j5+2
1<i<j<n —x; + = — — o — 0 —j+1
1<i<n —x; = —0y — = Oy — Oy —n+i—1
1<i<j<n —I; — T = —qp— = — 20 — 0 — 201 — 20, —2n+i+45—2

TABLE 2.1. Roots expressed as linear combinations of vectors in II

2.1.1. Definition of H

We define the family H as a family of maps in the Speiser class of transcendental
entire functions of finite singular type.

Let a = (ag,ay,- -+ ,a,) € C" be a vector such that ag # 0, a, # 0,
Py(2) = apz" 4 -+ - 4+ a1z + ag € C[¢]

and

where k is a positive integer strictly less than n = deg(P,) > 2. Define

fa(z) = (g © eXp(Z) — anenz+an71e("e—zi)z_;'_..._kalez_i_ao _ Z;LZO aje(jfk)z



Observe that maps of this form do not have any finite asymptotic values. This is the reason
why we restricted ourselves to integers k satisfying condition 0 < k < n. As it was mentioned
in Chapter 1, the most well known examples of this type of maps are maps from the cosine
family:.

We denote by Crit(f,) the set {z : f/(z) = 0}. Observe that

fx@=§3%@—méjw
j=0

and that ¢/ (z) = 0 if and only if 2P)(2) — kP,(z) = 0, which is equivalent to

3

a;(j — k)27 = 0.
§=0
Therefore, there exist n non-zero complex numbers (counting multiplicities) sq,S2, - , Sp
such that z € Crit(f,) if and only if e* = s for some k =1,2,--- ,n i.e.

{zx =log sy +2mim :m e Z,k=1,--- ,n}

is the set of critical points and observe that the set of critical values of a map f, is finite.
Denote by H the family of functions

HZ{fa(z):Pa(e):degPa>k>Oand(5a>O},

ekz

where by Py, we denote the post-critical set of f,, that is, the set

Pr. = | fp(Crit(f.))

n>0

and

1

.
0 = 5 min {é,dlst(Jfa,Pfa)} ,

where

dist(Jy,, Pyr,) = inf{|z1 — 20| : 21 € Jp,, 20 € Py}

is the Euclidean distance between the Julia set of f,, Jy,, and the post-critical set of f,, Py, .
The reason we define 9, in such a way will be more visible later on, starting with

Chapter 3, and is due to the application (we shall need) of the Koebe Distortion Theorem

10



since one can observe that, for every y € J;, and for every n > 1, there exists a unique

holomorphic inverse branch

(fa)y "+ B(fa(y),204) — C

such that (f3)," o (fi)(y) = v.
Then there exists a numerical constant K such that, for 21, 2o € Jy, with |21 — 23] < 4,

and for y € f"(z),

L _ (), ) (=)
Y R = Uyl =

Observe that Crit(f,) C Fy,, where Fy, is the Fatou set of f,. Consequently, maps in the
family H do not have neither parabolic domains nor Herman rings nor Siegel disks. Moreover,
as was written in Chapter 1 they do not have neither wandering nor Baker domains. Also for
every point z in the Fatou set there exists (super)attracting cycle such that the trajectory

of z converges to this cycle.

2.1.2. The Cylinder and the Definition of Jp,

Since the map f, € H is periodic with period 27i, we consider it on the quotient

space P = C/~ (the cylinder) where
21 ~ 29 il 21 — 29 = 2kmi for some k € Z.

If 7: C — P is the natural projection, then, since the map 7o f, : C — P is constant on

equivalence classes of relation ~, it induces a holomorphic map
F,.:P— P.

The cylinder P is endowed with FEuclidean metric which will be denoted in what follows by

the same symbol |w — z| for all z,w € P. The Julia set of F, is defined to be
Jr, = 7(J5,)

and observe that

Fa(JFa) = JFa = Fcl_l(JFa)

11



We shall study the set Ji consisting of those points of J;, that do not escape to

infinity under positive iterates of f,. In other words, if

Lo(f) = {z € C: lim f2(z) = o0},

then
Jr. = Jr\oo(fa)
and, if
Io(F2) = {z € P+ lim F"(2) = oo},
then

I = Jr\ oo (Fy)-

In what follows we fix a € C"*! and we denote for simplicity f, € H by f. The
following Lemma reveals some background information for a better understanding of the
dynamical behavior of maps in our family . This lemma will be used several times and it
will be a key technical ingredient for many proofs.

Observe first that, if we consider a = (ag, - - ,a,) € C"™, since

n

(2.2) fa(2) = Zaje(j_k)z

J=0

we have
(2.3) faz) = a;(G = k)eV 7.

LEMMA 2.4. Let f, be a function of form (2.2). Then there exist My, My, M3 > 0 such that,
for every z with |Re z| > Ms, the following inequalities hold.
(1) Myetfesl < [fu(2)] < MyedlFe =]
(2) MyetFesl < |fi(2)] < MpetRe sl
(3) a2 < [ful2)] < 32 Ifa(2)]
k if Re 2 <0

where q =
n—=k if Rez>0.

12



PRrOOF. Note that (iii) follows from (i) and (ii). The proof of (i) and (ii) follows from the

fact that

| fa(2)] = |anle PR = 4 o(ePRe 2y a5 Re 2 — o0

|fa(2)] = |agle ™% + o(e ™ #) as Re 2 — —o0

and from the observation that f/ is a function of the same (algebraic) type as f, (see (2.3)).

U

2.2. Bounded Orbits and Classical Conformal Repellers.

We fix again a € C**! and we denote f, by f, F, by F and the Julia set of ' by Jg.
Our goal in this section is to prove Proposition 2.8. In order to prove this proposition we

apply the thermodynamic formalism for compact repellers.
DEFINITION 2.5. Let f be a holomorphic function from an open subset V' of C into C and
J a compact subset of V. The triplet (J,V, f) is a conformal repeller if

(1) there are C' > 0 and « > 1 such that |(f™)'(z)] > Ca™ for every z € J and n > 1.

(2) f7Y(V) is relatively compact in V with

J={) ")

n>1

(3) for any open set U with U N J not empty, there is n > 0 such that
JcC frunld).
It is worth noting that there are no critical points of f in J.

2.2.1. Conformal Repellers

Let (J,V,g) be a (mixing) conformal expanding repeller( see for example [1] for more
properties). In the proof of Proposition 2.8, J = J;(M) is a compact subset of C, limit of

a finite conformal iterated function system, g = F', is a holomorphic function for which J

13



is invariant and for which there exist v > 1 and ¢ > 0 such that, for all n € N and for all

z € J,|(¢g")(2)| > cy™. For t € R we consider the topological pressure defined by

1
P.(t) = lim —log P,(n,t),

n—oo M,

where

P(nt)= > (g™ ()™

yeg~"(2)
The function P(t) = P,(t) as a function of ¢ is independent of z, continuous, strictly

decreasing, lim;_, _, P(t) = +oc0 and the following remarkable theorem holds.

THEOREM 2.6 (Bowen’s Formula). Hausdorff dimension of J is the unique zero of P(t).
For more details and definitions concerning the thermodynamic formalism of confor-
mal expanding repellers ( initiated by Bowen and Ruelle) we refer the reader to [1].
In order to prove Proposition 2.8, i.e. to show that HD(J) > 1, we use Bowen’s
formula and we observe that, from the definition of P,(n,t), it is enough to find a constant

C > 1 such that, for all z € J,
(2.7) P.(1,1) > C.

PROPOSITION 2.8. Let f € H. Then the Hausdorff dimension of the set of points in Julia

set of f having bounded orbit is strictly greater than 1.

PROOF. Let N be a large number, H = {z € C: Re z > N}. Observe that there exists U
such that U C {z:s—m < Im 2z < s+ 7} for some s € (—, 7], Re U > 0, f|y is univalent
and f(U) = H. Note that, since N is large, by Lemma 2.4 there exists vy > 1 such that, if
Re z > N, then

(2.9) [F'(2)| = f'(2)] > .
For every M > N define
P(M)={z€U:N<Rez< M}

14



Then, for j € Z, let L; : H — U be defined by the formula
Lj(z) = (flv) ™" (= + 2mij),
and let
(2.10) Q;(M) = L;(P(M)).
The set P(M) and the family of functions
{Lj}jexn

with
Ku=4{j€Z:Q;(M)C IntP(M)},
define a finite conformal iterated function system . By J;(M) we denote its limit set. The

set Ji(M) is forward F'—invariant. From (2.9) and from the fact that the Julia set is the

closure of the set of repelling periodic points it follows that
(2.11) Ji1(M) C Jp.

Next we need a condition for j which guarantees that );(AM) C IntP(M) (equivalently
Jj € Kyy) for all M large enough. Observe that

(2.12) Ky C Ky

for all M large enough. To prove (2.12), let j € Ky and let z € Q;(M + 1) \ Q;(M).
Note that, if we assume that M > Moe™ N+ then we can be sure that Re z > N + 1
(n and k are defined in section 2.1.1). Therefore, to get (2.12), it is enough to prove that
Re z < M + 1. Since

F(Qj(M + 1)\ Q;(M)) = P(M + 1)\ P(M),

it follows from Lemma 2.4 that |F'(z)| > %|f(z)| > M and, then,

QM + 1)\ Q) € B(= 17r) € Bl ).

But we know, that, for y € Q;(M), Re y < M. This proves (2.12). O

15



APPENDIX

ABC123
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In this appendix we have a couple of fancyish diagrams and a floating table.

dRpp mo
A® B ARQxy —— A
pA®id l l pA®id
Qx ® B — Qx ®Qx pa
1dRpp
B Qx

PB

REEQy ® Qy — > RE(EQy ® £Qy)

Ré (idRa)

cg@id R&(£'Qy ® Qx)

D" (mo)

Qy ® Qy - Qy

TABLE A.2. Roots and root vectors for 05,1

w Wi

Eg| A2 AA2 A4

Er | (A3 ABA, AL AiAyAs A A, AAs Ag ADs Dy Eg
By | A1AsAy AsAs A Ag A;  ADs D, AEs E;

Fy| A A, Cy By  AjA, AA,

Go| A A

Hy | A A, Ay L(5)

Hy| AAs Ay ALG)  Hs

Equation and theorem numbering in an appendix will almost certainly be funky.

17
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